STL12N60M2

N-channel 600 V, 0.400 Ω typ., 6.5 A MDmesh™ M2 Power MOSFET in a PowerFLAT 5x6 HV package

Datasheet - production data

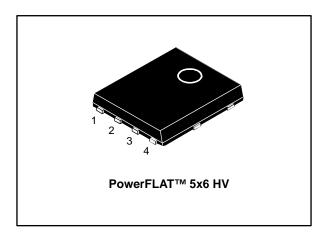
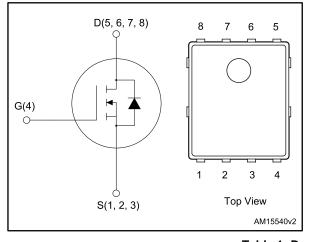



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STL12N60M2	600 V	0.495 Ω	6.5 A	52 W

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STL12N60M2	12N60M2	PowerFLAT 5x6 HV	Tape and reel

Contents STL12N60M2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

STL12N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	6.5	۸
ID	Drain current (continuous) at T _{case} = 100 °C	4.1	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	26	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	52	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	\//no
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	55 to 150	°C
T _j	Operating junction temperature	-55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.4	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	C/VV

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	1.6	Α
E _{AR} ⁽²⁾	Single pulse avalanche energy	120	mJ

Notes:

⁽¹⁾ Limited by maximum junction temperature.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ $I_{SD} \leq 6.5$ A, di/dt=400 A/µs; $V_{DS}(peak) < V_{(BR)DSS}, \, V_{DD} = 80\% \,\, V_{(BR)DSS}.$

 $^{^{(4)}}$ V_{DS} \leq 480 V.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board.

 $^{^{(1)}}$ Pulse width limited by T_{jmax} .

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STL12N60M2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4.5 A		0.400	0.495	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		ı	538	ı	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	•	29	1	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 \text{ V}$	-	1.1	-	ρ.
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	106	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	7	-	Ω
Q_g	Total gate charge	$V_{DD} = 400 \text{ V}, I_{D} = 9 \text{ A},$	•	16	1	
Q_gs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15</i> :		2.3	•	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	•	8.5	•	

Notes

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 4.5 \text{ A}$	ı	9.2	ı	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching	-	9.2	•	
$t_{d(off)}$	Turn-off delay time	times test circuit for resistive load" and Figure 19: "Switching time waveform")	ı	56	ı	ns
t _f	Fall time		ı	18	ı	

 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		9	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		36	Α
$V_{SD}^{(2)}$	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 9 \text{ A}$	1		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 9 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	284		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive	1	2.4		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")	1	17		Α
t _{rr}	Reverse recovery time	$I_{SD} = 9 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	404		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 16: "Test circuit	•	3.5		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	17.5		А

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

⁽²⁾ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

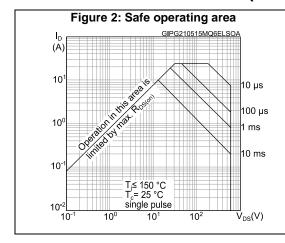


Figure 3: Thermal impedance

K $\delta = 0.5$

0.2

10-1

10-2

Single pulse $\delta = t_p/\tau$

10-3

10-5

10-5

10-4

10-3

10-7

10-1

10-1

10-1

10-2

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

10-1

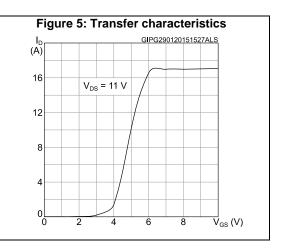
10-1

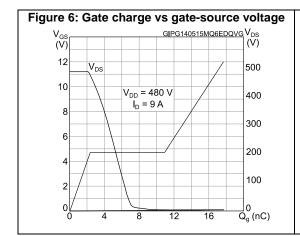
10-1

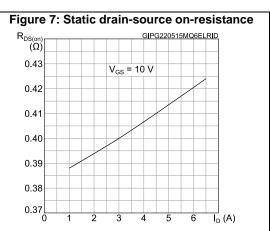
10-1

10-1

10-1


10-1


10-1


10-1

10-1

1

STL12N60M2 Electrical characteristics

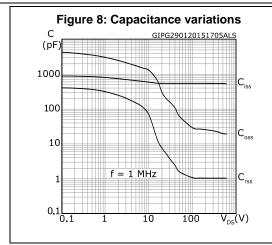


Figure 9: Normalized gate threshold voltage vs temperature

V_GS(th) AM03184v1

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

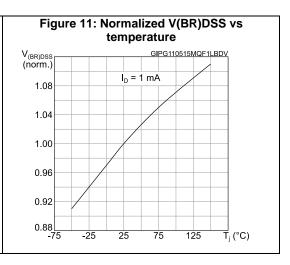
1.00

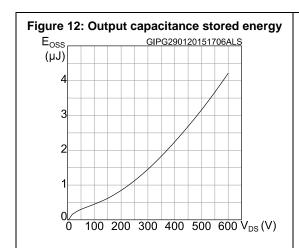
1.00

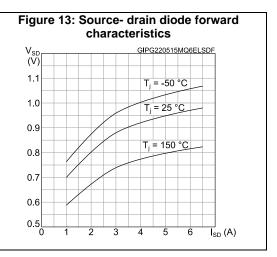
Figure 10: Normalized on-resistance vs temperature $R_{DS(on)}$ GIPG110515MQF1LRON (norm.)

2.2

1.8


1.4

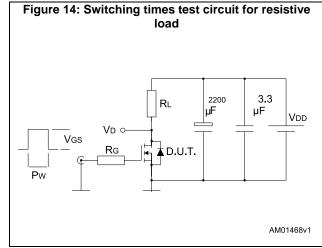

1.0

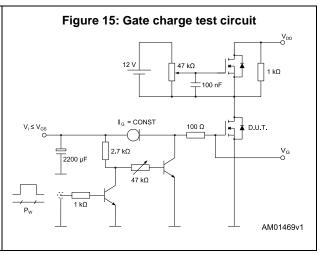

0.6

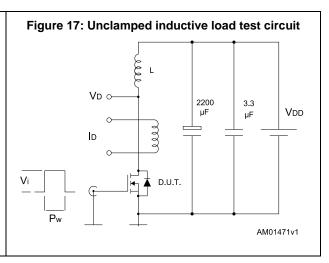
0.2

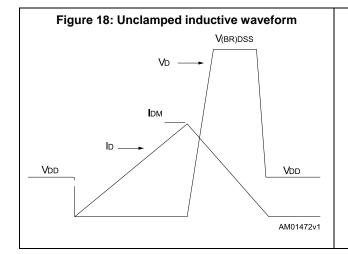
-75
-25
25
75
125 T_j (°C)

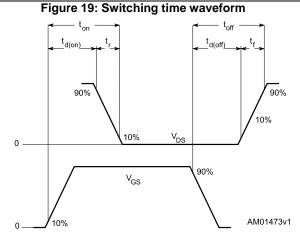







Test circuits STL12N60M2


3 Test circuits



577

AM01470v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of $\mathsf{ECOPACK}^{\otimes}$ packages, depending on their level of environmental compliance. $\mathsf{ECOPACK}^{\otimes}$ specifications, grade definitions and product status are available at: www.st.com. $\mathsf{ECOPACK}^{\otimes}$ is an ST trademark.

4.1 PowerFLAT™ 5x6 HV package information

Figure 20: PowerFLAT™ 5x6 HV package outline

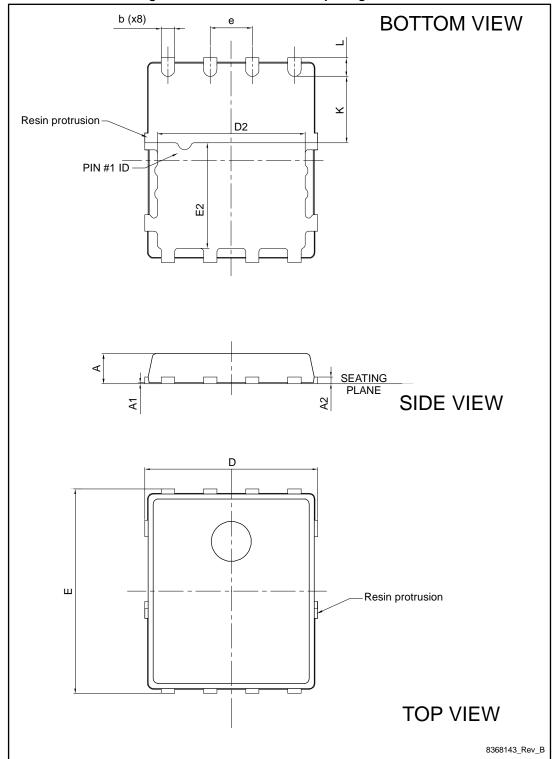


Table 9: PowerFLAT™ 5x6 HV mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
Α	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D	5.00	5.20	5.40		
Е	5.95	6.15	6.35		
D2	4.30	4.40	4.50		
E2	3.10	3.20	3.30		
е		1.27			
L	0.50	0.55	0.60		
K	1.90	2.00	2.10		

Figure 21: PowerFLAT™ 5x6 HV recommended footprint (dimensions are in mm)

Package information STL12N60M2

4.2 PowerFLAT™ 5x6 packing information

Figure 22: PowerFLAT™ 5x6 tape (dimensions are in mm)

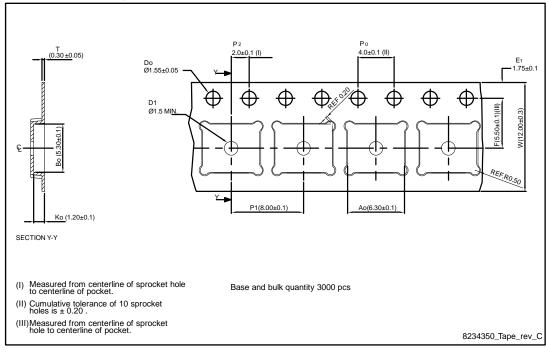
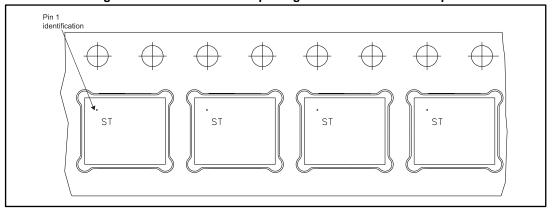



Figure 23: PowerFLAT™ 5x6 package orientation in carrier tape

PART NO.

R25.00

R25.00

R25.00

R25.00

All dimensions are in millimeters

R23.4350_Reel_rev_C

Revision history STL12N60M2

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
22-May-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

